Главная » Железо » Принципиальная схема дисковода dvd rw. Чайникам о устройстве компьютера – DVD дисковод

Принципиальная схема дисковода dvd rw. Чайникам о устройстве компьютера – DVD дисковод

Если DVD плеер сломался, вовсе не обязательно его выбрасывать или нести в мастерскую и платить деньги за ремонт. Можно разобрать и даже отремонтировать устройство своими руками.

Устройство и принцип работы DVD-плеера

Плеер состоит из корпуса с лотком для загрузки диска. На передней панели корпуса расположены: дисплей состояния, кнопки управления проигрывателем, на некоторых моделях могут быть разъёмы для подключения микрофона, наушников, флешки. Внутри корпуса все намного интереснее.

Коротко о главных составляющих устройства.

Процессор

Это основной элемент проигрывателя. Он потребляет электроэнергию от импульсного блока питания.

Лазерная читающая головка

Она используется для считывания информации с носителя. Широкий гибкий шлейф соединяет читающую головку с основой платой. Все дисковые носители имеют установочную дорожку, необходимую для правильной работы. Она располагается в центре. При загрузке диска лазер смещается к центру, чтобы считать эту дорожку. Если считывание прошло удачно, наличие диска установлено, и только после этого включается двигатель вращения, и диск начинает проигрываться.

Электромотор привода шпинделя

Мотор взаимодействует с процессором через драйвер. Скорость вращения диска зависит от сигналов процессора.

Драйвер

Это микросхема, которая получает команды от процессора и управляет работой моторчика привода шпинделя, катушкой фокусировки линзы лазера, моторчиком перемещения лазерного считывателя, двигателем загрузки и выгрузки лотка.

Возможен ли ремонт своими руками

«Сколько устройств и проводов! Я лучше отнесу его в мастерскую!» - скажете вы с ужасом, хватаясь за голову. Но! Не спешите тратить деньги. Есть такие поломки, которые можно легко выявить и устранить с помощью обычной отвёртки.

Если проигрыватель не включается

Здесь может быть много причин. Рассмотрим самые элементарные и распространённые. Снимем крышку плеера и продиагностируем на внутренние повреждения шнур питания. Для проверки работы мультиметра включаем его в режим измерения сопротивления. Соединяем щупы между собой. Если прибор исправен, то на дисплее появятся нули. Разомкнутые щупы присоединяем к шнуру. Один щуп к контакту кабеля в месте соединения с платой, другой поочерёдно к одному из контактов вилки. Если омметр выдаёт до 3 Омов, жила без повреждений. Если более, то в жиле есть прорыв, и шнур подлежит замене. Если мультиметр никак не отреагирует, значит, контакт на вилке и на противоположном конце не принадлежит одной жиле электрического провода. Не рекомендуется использовать мультиметр в режиме прозвонки, так как он срабатывает в диапазоне от 0 до нескольких сотен Ом. Следующим этапом нужно осмотреть наличие пыли и вздутых конденсаторов. Пыль убираем, конденсаторы меняем. Если визуальные неисправности не обнаружены, и замена провода не изменила ситуацию, отнесите плеер в мастерскую.

На видео ниже показано, как работает мультиметр.

Как прозвонить провод

Если диски не читаются

Рассмотрим основные причины поломки и как с ними бороться.

Неисправность головки

Причины: загрязнилась лазерная головка или лазер вышел из строя.

Загрязнённую головку продувают сжатым воздухом с использованием обычной резиновой груши. Линзу объектива протирают ватной палочкой, смоченной спиртом. Нельзя использовать растворители. Протирать нужно очень аккуратно лёгкими движениями. Если очистки недостаточно, головку надо заменить.

Очистка на видео

Замена лазерной головки

Неисправность соединительного шлейфа

Шлейф часто переламывается на сгибах. Разбираем плеер так же, как при обслуживании лазерной головки. Аккуратно вытаскиваем шлейф из штекеров. Осматриваем. Если есть видимые разрывы по краям, и вы не хотите менять шлейф полностью, делаем предварительный ремонт. Обрезаем ножницами место повреждения. Снимаем слой изоляции ножом или лезвием так, чтобы не нарушить металлические полоски. Если не получается аккуратно, то можно попробовать снять изоляцию медицинской иголкой или нулевой наждачкой. Ширина снятого слоя должна быть такой же, как у обрезанного кусочка шлейфа. Снимаем синюю пластиковую конечную пластину с обрезка и аналогично приклеиваем её на обновлённый край шлейфа с помощью супер клея.

Восстановление шлейфа на видео

Теперь, когда визуально шлейф кажется целым, прозваниваем его контакты. Присоединяем один щуп к контакту с одного конца, а другой поочерёдно ко всем контактам с другого конца. Проделываем то же самое с другой стороны шлейфа. Каждый контакт должен звониться с одним контактом на другой стороне. Если контакт звонится с несколькими, то в шлейфе короткое замыкание. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. И в том, и в другом случае шлейф использованию не подлежит. Нужно произвести его замену.

Неисправность двигателя

Если двигатель вращается неравномерно или не вращается, то его нужно заменить вместе с насадкой.

Замена DVD-двигателя на видео

Если не открывается лоток

Когда крышка проигрывателя снята, включаем его в сеть и нажимаем кнопку извлечения диска. Так как лоток сам не в состоянии выдвинуться, нужно его слегка подтолкнуть. Но сделать это осторожно, чтобы не ударило током. Крышка выдвинется и отключаем плеер от сети. Берём палочку с намотанной ватой и смачиваем спиртом. Протираем рельсы лотка. Нажимаем кнопку. Если неполадка не исправлена, откручиваем нужные винты, снимаем планки, пластмассовые крышки и добираемся до пассика.

Меняем пассик и собираем все обратно. На видео ниже показана подробная замена пассика привода компьютера. В DVD плеере работаем аналогично.

Чистка, смазка, замена пассика

Если проигрыватель не видит флешку

Большинство флеш накопителей изначально имеют формат NTFS. Нужно вставить флешку в компьютер, скопировать нужную информацию на жёсткий диск, щёлкнуть по флешке правой кнопкой мыши и выбрать «Форматировать». Далее, выбираем формат FAT 32, соглашаемся с тем, что все данные будут потеряны и жмём ok. Если DVD по-прежнему не видит флешку, значит, проблема в электронике: возможно, повреждены микросхемы или нарушено электропитание в проводах или шлейфах. Стоит обратиться к профессионалам.

Можно ли прошить DVD-плеер

Обновление устройства не избавит вас от всех проблем. Прошивкой можно русифицировать плеер. Он будет производить фильмы большего размера, устранятся ошибки в чтении поддерживаемых форматов. Но читать форматы, которые раньше не поддерживались, плеер не сможет. Поэтому, если устройство работает без лагов, не обновляйте его.

Для того чтобы узнать, возможно ли прошить ваш DVD плеер, нужно внимательно прочитать модель устройства на задней крышке. Зайти на официальный сайт производителя и посмотреть прошивки для этой модели. Если они существуют, то скачиваем последнюю версию на компьютер, записываем её на CD. Запускаем диск в проигрывателе. Когда обновление закончится, на экране телевизора или плеера появится начальная заставка, а лоток с диском автоматически выдвинется.

Сложные поломки

Помимо неполадок, которые может исправить любой пользователь, умеющий работать отвёрткой и плоскогубцами, есть не менее распространённые, но более сложные проблемы:

  • не работает подсветка дисплея;
  • искажение звука;
  • нет изображения и звука;
  • нет изображения или звука;
  • не работает режим «караоке»;
  • отсутствует цветное изображение;
  • сложные механические повреждения, в том числе попадание воды;
  • поломка контроллера питания;
  • выход из строя микросхем.

Существует много производителей DVD плееров. Принцип действия и основные элементы устройств одинаковы. Поэтому и ремонт проигрывателей разных производителей аналогичен. Если у вас есть желание попробовать самому отремонтировать плеер, дерзайте. Возможно, у вас получится, и вы сможете в другой раз помочь своим знакомым. А, может, вам так понравится, что вы займётесь радиотехникой и откроете свой бизнес.

Устpойство пpивода CD-ROM.

CD-ROM привод - это сложное электpонно-оптико-механическое устpойство для считывания инфоpмации с лазеpных дисков. Типичный дpайв состоит из платы электpоники (иногда двух и даже тpех плат - схема упpавления шпинделем и усилитель оптопpиемника отдельно), шпиндельного узла, оптической считывающей головки с пpиводом ее пеpемещения и механики загpузки диска.

Hа плате электpоники pазмещены:

  • схема усиления и коppекции сигнала с оптоголовки;
  • схемы ФАПЧ сигнала и САР шпинделя;
  • пpоцессоp обpаботки кода Reed-Solomon;
  • схемы САР фокусиpовки луча и динамического слежения за доpожкой;
  • схема упpавления пеpемещением оптоголовки;
  • пpоцессоp упpавления (логики);
  • буферная память;
  • интерфейс с контроллером (IDE/SCSI/прочие);
  • разъемы интерфейса и выхода звукового сигнала;
  • блок переключателей режимов (перемычек/джамперов).

Типовой пpивод состоит из платы электpоники, шпиндельного двигателя, системы оптической считывающей головки и системы загpузки диска. Hа плате электpоники pазмещены все упpавляющие схемы пpивода, интеpфейс с контpоллеpом компьютеpа, pазъемы интеpфейса и выхода звукового сигнала. Большинство пpиводов использует одну плату электpоники, однако в некотоpых моделях отдельные схемы выносятся на вспомогательные небольшие платы.

Узел шпинделя (двигатель и собственно шпиндель с держателем диска) служит для вращения диска. Обычно диск вращается с постоянной линейной скоростью, что означает, что шпиндель меняет частоту вращения в зависимости от радиуса дорожки, с которого в данный момент считывает информацию оптоголовка. При перемещении головки от внешнего радиуса диска к внутреннему диск должен быстро увеличить скорость вращения примерно вдвое, поэтому от шпиндельного двигателя требуется хорошая динамическая характеристика. Двигатель используется как для разгона, так и для торможения диска.

На оси шпиндельного двигателя (или в собственных подшипниках) закреплен собственно шпиндель, к которому после загрузки прижимается диск. Поверхность шпинделя иногда покрыта резиной или мягким пластиком для устранения проскальзывания диска, хотя в более прогрессивных конструкциях обрезинивают только верхний прижим - чтобы увеличить точность установки диска на шпиндель. Прижим диска к шпинделю осуществляется при помощи верхнего прижима, расположенного с другой стороны диска. В некоторых конструкциях шпиндель и прижим содержат постоянные магниты, сила притяжения которых прижимает прижим через диск к шпинделю. В других конструкциях для этого используются спиральные или плоские пружины.

Система оптической головки состоит из самой головки и системы ее пеpемещения. В головке pазмещены лазеpный излучатель на основе инфpакpасного лазеpного светодиода, система фокусиpовки, фотопpиемник и пpедваpительный усилитель. Система фокусиpовки пpедставляет собой подвижную линзу, пpиводимую в движение электpомагнитной системой voice coil (звуковая катушка), сделанной по аналогии с подвижной системой гpомкоговоpителя. Изменение напpяженности магнитного поля вызывают пеpемещение линзы и пеpефокусиpовку лазеpного луча. Благодаpя малой инеpционности такая система эффективно отслеживает веpтикальные биения диска даже пpи значительных скоpостях вpащения.

Система пеpемещения головки имеет собственный пpиводной двигатель, пpиводящий в движение каpетку с оптической головкой пpи помощи зубчатой либо чеpвячной пеpедачи. Для исключения люфта используется соединение с начальным напpяжением: пpи чеpвячной пеpедаче - подпpужиненные шаpики, пpи зубчатой - подпpужиненные в pазные стоpоны паpы шестеpней. В качестве двигателя обычно используется шаговый двигатель, и гоpаздо pеже - коллектоpный двигатель постоянного тока.

Система загpузки диска бывает тpех ваpиантов: с использованием специальной кассеты для диска (caddy), вставляемого в пpиемную нишу пpивода (аналогично тому, как вставляется 3" дискета в дисковод), с использованием выдвижного лотка (tray), на который кладется сам диск, и с использованием втяжного механизма. Системы с Tray обычно содержат специальный двигатель, обеспечивающий выдвижение лотка, хотя встречаются конструкции (например, Sony CDU31) без специального привода, задвигаемые рукой. Системы с втяжным механизмом применяются как правило в компактных CD-Changer-ах на 4-5 дисков, и обязательно содержат двигатель для втягивания и выброса дисков через узкую зарядную щель.

На передней панели привода обычно расположены кнопка Eject для загрузки/выгрузки диска, индикатор обращения к приводу и гнездо для подключения наушников с электронным или механическим регуля- тором громкости. В ряде моделей добавлена кнопка Play/Next для запуска проигрывания звуковых дисков и перехода между звуковыми дорожками.

Большинство приводов также имеет на передней панели небольшое отверстие, предназначенное для аварийного извлечения диска в тех случаях, когда обычным способом это сделать невозможно - например, при выходе из строя привода лотка или всего CD-ROM, при пропадании питания и т.п. В отверстие обычно нужно вставить шпильку или распрямленную скрепку и аккуратно нажать - при этом снимается блокировка лотка или дискового футляра, и его можно выдвинуть вручную (хотя существуют приводы, например Hitachi, в которых в такое отверстие надо вставлять небольшую отвертку и вращать ей находящуюся за передней панелью драйва ось с шлицем).


Структурная схема CD-ROM


Функциональная схема CD-ROM

Весьма важным компонентом устройства является оптико-электронная система считывания информации. Несмотря на небольшие размеры, система эта - очень сложное и точное оптическое устройство.

Она состоит из:

  • сервосистемы управления вращением диска;
  • сервосистемы позиционирования лазерного считывающего устройства;
  • сервосистемы автофокусировки; сервосистема радиального слежения;
  • системы считывания;
  • схемы управления лазерным диодом.

Сервосистема управления вращением диска обеспечивает постоянство линейной скорости движения дорожки считывания на диске относительно лазерного пятна. При этом угловая скорость вращения диска зависит как от расстояния головки считывания до центра диска, так и от условий считывания информации.


Сервосистема позиционирования головки считывания информации обеспечивает плавное подведение головки к заданной дорожке записи с ошибкой, не превышающей половины ширины дорожки в режимах поиска требуемого фрагмента информации и нормального воспроизведения. Перемещение головки считывания, а вместе с ней и лазерного луча, по полю диска осуществляется двигателем головки. Работа двигателя контролируется сигналами прямого и обратного перемещения, поступающими с процессора управления, а также сигналами, вырабатываемыми процессором радиальных ошибок.

Сервосистема радиального слежения обеспечивает удержание луча лазера на дорожке и оптимальные условия считывания информации. Работа системы основана на методе трех световых пятен. Суть метода заключается в разделении основного луча лазера с помощью дифракционной решетки на три отдельных луча, имеющих незначительное расхождение. Центральное световое пятно используется для считывания информации и для работы системы автофокусировки. Два боковых луча располагаются впереди и позади основного луча с незначительным смещением вправо и влево. Сигнал рассогласования этих лучей от датчиков позиционирования воздействует на привод слежения, вызывая при необходимости коррекцию положения центрального луча.

Работоспособность системы радиального слежения можно проконтролировать по изменению сигнала рассогласования, поступающего на привод слежения.

Контроль и управление вертикальным перемещением фокусирующей линзы осуществляется под воздействием сервофокуса. Эта система обеспечивает точную фокусировку лазерного луча в процессе работы на рабочей поверхности диска. После загрузки и старта CD начинается настройка фокуса по максимальному уровню выходного сигнала фотодетекторной матрицы и минимальному уровню сигнала ошибки детекторов точной фокусировки и прохождения нуля фокуса. В момент старта диска процессор управления CD-ROM вырабатывает сигналы корректировки, которые обеспечивают многократное (двух- или трехкратное) перемещение фокусной линзы, необходимое для точной фокусировки луча на дорожку диска. При нахождении фокуса вырабатывается сигнал, разрешающий считывание информации. Если после двух-трех попыток этот сигнал не появляется, процессор управления выключает все системы и диск останавливается. Таким образом, о работоспособности системы фокусировки можно судить как по характерным движениям фокусной линзы в момент старта диска, так и по сигналу запуска режима ускорения диска при нахождении фокуса луча лазера.

Система считывания информации содержит фотодетекторную матрицу и дифференциальные усилители сигналов. О нормальной работе этой системы можно судить по наличию высокочастотных сигналов на ее выходе при вращении диска.

Система управления лазерным диодом обеспечивает номинальный ток возбуждения диода в режимах пуска диска и считывания информации. Признаком нормальной работы системы является наличие ВЧ-сигнала амплитудой около 1 В на выходе системы считывания.

Системы записи, считывания и последующей обработки информации определяют общую функциональную схему CD-ROM, представленную на функциональной схеме. Помимо рассмотренных выше систем, она включает синхрогенератор, обеспечивающий синхросигналами все узлы CD-ROM, и EFM-демодулятор, преобразующий 14-разрядные кодовые посылки с диска в 8-разрядный последовательный код. Далее информация попадает в процессор цифровых данных, который совместно с процессором системного управления является сердцем всего устройства. Здесь происходит обратное перемежение данных и коррекция ошибок. Задачей перемежения данных при записи информации является «растяжка» каждого байта информации на несколько кадров записи. При этом, если и случается потеря даже нескольких кадров информации в результате механического повреждения поверхности диска, результатом обратного перемежения данных будет наличие мелких ошибок в отдельных байтах. Такие ошибки исправляет схема коррекции ошибок.

Российский Государственный Заочный Аграрный Университет

Реферат по теме:

Обзор DVD-приводов

Студента I курса

группы ПИ – 1-24

Кузнецова Игоря

1. Что такое DVD?

2. Основы устройства DVD.

3. Множество поверхностей DVD .

4. .

5. Запись на DVD.

6. Видео на DVD.

7. DVD в действии.

8. Звук на DVD.

10. Обзор DVD-приводов популярных марок

Что такое DVD?

После долгого периода времени, потраченного на планирование и разработки, увидел свет новый формат, которого все так ждали. Появление формата DVD ознаменовало собой переход на новый, более продвинутый, уровень в области хранения и использования данных, звука и видео.
Первоначально аббревиатура DVD расшифровывалась, как digital video disc, это оптические диски с большой емкостью. Эти диски используются для хранения компьютерных программ и приложений, а так же полнометражных фильмов и высококачественного звука. Поэтому, появившаяся несколько позже расшифровка аббревиатуры DVD, как digital versatile disc, т.е. универсальный цифровой диск - более логична.
Снаружи, диски DVD выглядят как обычные диски CD-ROM. Однако возможностей у DVD гораздо больше. Диски DVD могут хранить в 26 раз больше данных, по сравнению с обычным CD-ROM. Имея физические размеры и внешний вид, как у обычного компакт-диска или CD-ROM, диски DVD стали огромным скачком в области емкости для хранения информации, по сравнению со своим предком, вмещающим 650MB данных. Стандартный однослойный, односторонний диск DVD может хранить 4.7GB данных. Но это не предел -- DVD могут изготавливаться по двухслойному стандарту, который позволяет увеличить емкость хранимых на одной стороне данных до 8.5GB. Кроме этого, диски DVD могут быть двухсторонними, что увеличивает емкость одного диска до 17GB. К несчастью, чтобы считать DVD диск, Вам придется купить новое устройство, но это новое аппаратное средство будет так же прекрасно считывать Ваши старые диски CD-ROM и звуковые CD. Что все это означает для нас большая емкость новых дисков? Это значит, что у нас появляются поистине неограниченные возможности для обучения и развлечений, для просмотра видеофильмов с потрясающим цифровым качеством изображения и звука. DVD обеспечивает более четкое и качественное изображение, чем лазерный диск (LD) и более насыщенный звук, чем на CD. Более того, DVD дает вам возможность выбора. Вы можете выбрать, с какого ракурса просматривать сцену фильма, благодаря тому, что одна и та же сцена снимается под разными углами положения камеры. Благодаря этому, один и тот же фильм можно смотреть, например, со сценами насилия или без них, а сюжет одного и того же фильма может причудливым образом изменяться. И почти все это уже имеется в продаже! Далее, мы подробнее рассмотрим технологию, которая предлагает нам столько возможностей.

Основы устройства DVD .

Как и CD-ROM, диски DVD хранят данные, за счет расположенных насечек вдоль спиральных треков на отражающей металлической поверхности, покрытой пластиком. Используемый в устройствах чтения DVD дисков лазер, скользит вдоль треков по насечкам, а отраженный луч интерпретируется приемным устройством в виде единиц или нулей.
Основное требование, при разработке DVD, было простым: увеличить емкость хранимых данных, за счет расположения как можно большего числа насечек вдоль треков на диске, при этом технология изготовления должна быть дешевой.
Результатом исследований стала разработка более высокочастотного полупроводникового лазера с меньшей длиной волны, вследствие чего стало возможным использовать насечки более маленького размера.

В то время как лазер в обычном устройстве CD-ROM имеет длину волны 780-нанометров (nm), устройства DVD используют лазер с длиной волны 650-nm или 635-nm, что позволяет покрывать лучом в два раза больше насечек на одном треке, и в два раза больше треков, расположенных на одной записанной поверхности.
Другие нововведения - это новый формат секторов, более надежный код коррекции ошибок, и улучшенная модуляция каналов.
Вместе, эти улучшения дополнительно увеличивают плотность записи данных в полтора раза. Жесткие производственные требования и незначительно большая поверхность записи, стали последним препятствием, при разработке DVD, из-за чего емкость данных, размещаемых на диске ограничена 4.7Gb. Но оказалось, что это не предел.
Для записи видео и звука на DVD применяется очень сложная технология компрессии данных, носящая имя MPEG-2. MPEG-2 представляет из себя следующее поколении стандарта на сжатие (компрессию) видео и звуковых данных, обеспечивающего возможность разместить большие объемы информации в меньшем пространстве.
Стандарт сжатия MPEG разработан Экспертной группой кинематографии (Moving Picture Experts Group - MPEG). MPEG это стандарт на сжатие звуковых и видео файлов в более удобный для загрузки или пересылки, например через интернет, формат. По стандарту MPEG-1 потоки видео и звуковых данных передаются со скоростью 150 килобайт в секунду - с такой же скоростью, как и односкоростной CD-ROM проигрыватель -- и управляются путем выборки ключевых видео кадров и заполнением только областей, изменяющихся между кадрами. К несчастью, MPEG-1 обеспечивает качество видеоизображения более низкое, чем видео, передаваемое по телевизионному стандарту.
Компрессия по стандарту MPEG-2 кардинально меняет положение вещей. Более 97% цифровых данных, представляющих видео сигнал дублируются, т.е. являются избыточными и могут быть сжаты без ущерба качеству изображения. Алгоритм MPEG-2 анализирует видеоизображение в поисках повторений, называемых избыточностью. В результате процесса удаления избыточности, обеспечивается превосходное видеоизображение в формате MPEG-2 при более низкой скорости передачи данных. По этой причине, современные средства поставки видеопрограмм, такие как цифровые спутниковые системы и DVD, используют именно стандарт MPEG-2.

Множество поверхностей DVD

Большинство дисков DVD имеют емкость 4.7GB. Применение схем удвоения плотности и их комбинирования, позволяет иметь диски большей емкости: от 8.5Gb и 9.4Gb до 17Gb.

Существуют следующие структурные типы DVD:
Single Side/Single Layer (односторонний/однослойный): это самая простая структура DVD диска. На таком диске можно разместить до 4.7 Гб данных. Кстати, эта емкость в 7 раз больше емкости обычного звукового CD и CD-ROM диска.

Single Side/Dual Layer (односторонний/двуслойный): этот тип дисков имеет два слоя данных, один из которых полупрозрачный. Оба слоя считываются с одной стороны и на таком диске можно разместить 8.5 Гб данных, т.е. на 3.5 Гб больше, чем на однослойном/одностороннем диске.

Double Side/Single Layer (двусторонний/однослойный): на таком диске помещается 9.4 Гб данных (по 4.7 Гб на каждой стороне). Нетрудно заметить, что емкость такого диска вдвое больше одностороннего/однослойного DVD диска. Между тем, из-за того, что данные располагаются с двух сторон, придется переворачивать диск или использовать устройство, которое может прочитать данные с обеих сторон диска самостоятельно.
Double Side/Double Layer (двусторонний/двуслойный): структура этого диска обеспечивает возможность разместить на нем до 17 Гб данных (по 8.5 Гб на каждой стороне).
Заметим, что все приведенные цифры соответствуют емкости, указанной в миллионах байтов; если округлять по другой методике, принимая за основу, что 1Кб=1024 байта, а не 1000 байт, то получатся другие числа: 4.38GB, 7.95GB, 8.75GB, и 15.9GB соответственно.

Нетрудно заметить, что простейшим способом удвоения емкости является использование двухсторонних дисков. Производители могут изготавливать диски DVD толщиной 0.6мм, что в половину меньше толщины стандартного диска CD. Это дает возможность соединить два диска обратными сторонами и получить емкость в 9.4Gb.
По другой технологии, создается второй слой для размещения данных, это позволяет увеличить емкость одной стороны диска. Первый слой делается полупрозрачным, таким образом лазерный луч может проходить через него и отражаться уже от второго слоя. По этой схеме на каждой стороне дика можно разместить по 8.5GB данных.
Если сложить двуслойные диски обратными сторонами вместе, получится очень приличная емкость в 17GB.

Скорость передачи и время доступа

Существующие приводы DVD имеют несколько более медленную скорость вращения дисков, по сравнению с устаревшими устройствами CD-ROM c 3-х кратной скоростью. Однако, благодаря более плотному размещению данных на DVD, скорость их передачи соответствует 9-ти кратной скорости передачи данных приводов CD-ROM, что в цифрах соответствует передачи около 1.3 MB/sec.
Соль в том, что видео на DVD прокручивается приблизительно с 9-ти кратной скоростью, в то время, как видеопрограммы на CD обычно рассчитаны на 2-х или 4-х кратную скорость (вот почему при использовании х24 скоростного привода CD нет никакого заметного улучшения качества при проигрывании видео). За счет передачи видеоданных в 2.25-4.5 раза быстрее, видеофильм, показываемый с проигрывателя DVD имеет такое качество, что по сравнению с ним видео с CD-ROM проигрывателя напоминает мерцающее изображение в старинном кинотеатре. И действительно, если запустить один и тот же фильм с VideoCD, VHS или DVD, то разница в качестве будет заметна на глаз, причем однозначно выигрывает DVD. Более того, на мониторе DVD фильм смотрится лучше, чем на телевизоре.
Сейчас на рынке уже появились устройства чтения DVD дисков второго поколения, имеющие уже 2-х кратную скорость. Хотя это и не влияет на качество проигрываемого видео, зато увеличит скорость загрузки программного обеспечения с DVD-ROM.
Практически не изменилось положение только с одним важным параметром, влияющем на производительность: время доступа, или то время, которое требуется лазерному лучу для перехода с одного трека на другой. Имея среднее время доступа между 150 и 200 миллисекунд (ms), приводы DVD-ROM, конечно же, не могут соперничать с жесткими дисками, по скорости запуска приложений или времени поиска разрозненных данных.
Но это не трагично, т.к. время доступа не влияет на проигрывание видео, потому что в этом случае данные располагаются на диске последовательно.
Кроме того, DVD-ROM, так же, как и CD-ROM, прекрасно подходят для загрузки программ и в качестве большого хранилища данных для приложений, которые не помещаются на Ваш жесткий диск.

Запись на DVD.

Существуют устройства DVD-R, DVD-RW, DVD+R, DVD+RW которые позволят Вам хранить данные на специальных записываемых или перезаписываемых дисках DVD.
Устройства DVD-R и DVD+R позволяют сделать лишь однократную запись. Отличие болванки DVD-R от обычного диска DVD-ROM заключается в специальном пигментном слое, чутко реагирующем на прикосновения лазерного луча.

За долгое время существования CD/DVD, наверное, многим из нас компьютер внезапно выдавал на экране неприятные надписи типа «отсутствует диск» или «нет связи с устройством», однако более определенной информации добиться от ПК было невозможно.

Подобные неисправности могут быть связаны как с полной потерей работоспособности самих устройств, так и с отказом читать определенные диски (при нормальном чтении других). Много неприятностей доставляют и так называемые условные отказы (плавающие неисправности), когда чтение диска либо внезапно прекращается, а потом возобновляется, либо производится с ошибками.

Конечно, многие отказы связаны с дешевыми пиратскими дисками, использование которых может нарушить бесперебойную работу устройства. Причем, помимо того, что информация на таком диске может не читаться, использование несбалансированных дисков в высокоскоростных приводах зачастую ведет к разрушению как самого диска (он буквально разлетается на мелкие осколки), так и конструктивных элементов устройства чтения.

При покупке диска обращайте внимание на его качество изготовления. На диске не должно быть зазубрин, наплывов и повреждений, а на его рабочей поверхности должны отсутствовать царапины и посторонние включения (пузырьки, видимые неоднородности и пр.). Проверяйте диски как с внутренней, так и с внешней стороны, поскольку информационный слой находится как раз под красочной этикеткой CD/DVD.

Однако не всегда в поломках оптических приводов виноваты «пираты». Как показала практика, отказы CD/DVD-устройств и без того довольно часты.

Основные неисправности CD/DVD-приводов

Классифицировать неисправности оптического дисковода по внешним проявлениям несложно, однако вызвавшие их причины могут быть различны.

Можно выделить следующие проявления неисправностей:

  • CD/DVD-привод не определяется компьютером;
  • привод определяется, но диск не раскручивается;
  • лоток выбрасывается и тут же убирается обратно;
  • диск принимается и тут же выбрасывается обратно;
  • привод плохо читает диски или вообще их не читает.

Если дисковод совсем не определяется компьютером, то причина может быть не в нем, а в настройках операционной системы, установках BIOS или в неисправности IDE-контроллера материнской платы.

Поэтому сначала необходимо проверить надежность соединения проводов питания и IDE-кабеля, подходящего к устройству. После этого проконтролировать правильность установки перемычек MASTER/SLAVE на всех устройствах, подсоединенных к этому кабелю. Оптический привод не должен конфликтовать с винчестером, подключенным к тому же шлейфу интерфейса IDE. Затем следует убедиться в правильности установок BIOS, посмотреть, определяется ли его средствами этот оптический дисковод и другие устройства, подключенные к тому же IDE-кабелю. Если устройство не определяется, то нужно попробовать отключить от IDE-кабеля другие устройства, а сам кабель подключить к другому контроллеру. В случае CD-ROM с интерфейсом SCSI проверяют правильность установки адреса (этот адрес не должны иметь другие SCSI-устройства) и смотрят, появилось ли устройство в BIOS SCSI-контроллера.

Затем следует убедиться в правильности подключения CD/DVD-привода в операционной системе (правильно ли выбраны и установлены драйвер или программа, обеспечивающая работу операционной системы с устройством).

Если ничего не помогает, то, возможно, нужно проверить, не испорчена ли прошивка в ROM-памяти оптического привода (чаще всего это Flash-память), не сожжен ли источник вторичного напряжения (3,3 В) или предохранители (резисторы). Для защиты питания в оптическом приводе всегда стоит дополнительный фильтр, а иногда устанавливают дополнительные стабилизаторы на 5 В, выход которых из строя обычно приводит к такому же эффекту.

Все остальные неисправности можно условно разделить на три типа:

  • механические неисправности;
  • неисправности оптической системы;
  • неисправности электронных компонентов.

Профилактика и лечение

Основными причинами возникновения неисправностей оптических приводов являются, безусловно, механические поломки. Они составляют около 75-80% от общего числа неисправностей. Причем чаще всего причинами выхода из строя CD/DVD-приводов (как компьютерных, так и бытовых, предназначенных для прослушивания музыки и просмотра фильмов) являются загрязнение подвижных частей механизма транспортировки диска и пыль, скопившаяся на оптических частях.

Наличие пыли и грязи на подвижных частях механизма, особенно на краях подвижных салазок каретки, делает невозможным запирание механизма, удерживающего диск, в результате чего устройство не фиксирует диск и постоянно его выбрасывает. Если, напротив, привод выбрасывает лоток и тут же забирает его обратно, то, скорее всего, причиной дефекта является выход из строя датчика положения лотка. То, что лоток выброшен, привод определяет с помощью контактного датчика, который и следует найти, попытаться поправить его положение, починить или заменить.

Для того чтобы очистить дисковод от пыли, можно для начала ограничиться его частичной разборкой (выдвинуть лоток и снять лицевую панель), а затем продуть внутренности дисковода пылесосом, настроенным на выдув воздушного потока.

Оптическая система часто отказывает из-за пыли, скопившейся на фокусной линзе или на призме. Если продувка устройства не помогает, можно попробовать стереть с линзы пыль мягкой фланелью или кисточкой. Помните, что ни в коем случае нельзя использовать для протирки спирт или растворители! Фокусные линзы большинства современных оптических приводов выполнены из органической пластмассы, и растворитель необратимо повредит их поверхность. Сильно загрязненную линзу лучше всего протереть кусочком жесткой бумаги. Эта операция проводится крайне осторожно, так как можно повредить подвеску самого лазера.

Сложнее обстоит дело с призмой, которая стоит за линзой, - добраться до нее крайне трудно. Причем головка, как правило, неразборная, но даже если она и разбирается, то при этом можно сбить ее настройки. Поэтому у большинства приводов загрязнение линзы означает ее полную непригодность. Иногда оптическая система выходит из строя даже из-за обычного волоска, попавшего на призму, - в этом случае опять же можно попробовать продуть систему мощным потоком воздуха.

Кстати, не рекомендуется использовать для чистки оптики специальные диски, якобы специально предназначенные для этого. Большинство из них не только не почистят ваш привод, но могут даже серьезно повредить его. Ведь современные оптические приводы раскручивают диск до очень большой скорости и при этом имеют очень нежную считывающую головку, поэтому если вам дорог ваш аппарат, то не чистите его с помощью подобных приспособлений.

Однако большинство приводов, работающих в нормальных условиях, не доживают до той стадии, когда отказы может вызвать повышенная запыленность. Чаще всего пластмасса линзы просто мутнеет от времени и/или от перегрева привода в системном блоке. Такая неисправность устраняется только дорогостоящей заменой считывающей лазерной головки. Впрочем, на подобную неисправность приходится не более 10% случаев. Здесь можно, конечно, посоветовать увеличить интенсивность свечения лазера. Для этого регулируют установленный на каретке с лазером переменный резистор (обычно он очень маленький - 5-7Ѕ2-5 мм). Поворачивают движок этого переменного резистора по часовой стрелке на 20-30°, после чего проверяют факт вращения приводного двигателя при установке диска. Если диск не стал вращаться, то поворачивают движок переменного резистора еще на 20-30°, и так продолжают до тех пор, пока двигатель не запустится (он должен запуститься и какое-то время - примерно 10-20 секунд - вращаться с постоянной скоростью).

Необходимость вращения переменного резистора, регулирующего интенсивность свечения лазера, вызвана тем, что со временем мощность светового потока лазера уменьшается (старение элементов, помутнение линзы и т.д.), однако после такой корректировки оптическая система обычно все равно служит недолго.

Другие неисправности оптико-электронной системы считывания информации устранить самостоятельно вам вряд ли удастся. Несмотря на небольшие размеры, оптическая система CD/DVD-привода представляет собой очень сложное и точное оптическое устройство, включающее сервосистемы управления вращением диска, позиционирования лазерного считывающего устройства, автофокусировки, радиального слежения, а также системы считывания и управления лазерным диодом.

Характерными признаками неисправности являются либо отсутствие вращения диска, либо, наоборот, постоянный его разгон до максимальной скорости вращения. При попытке изъять диск из неисправного дисковода с помощью органов управления каретка открывается с вращающимся на ней диском.

В работе исправной системы должны четко прослеживаться следующие фазы:

Старт и плавный разгон диска;

Установившийся режим вращения;

Интервал торможения до полной остановки;

Съем диска лотком каретки со шпинделя двигателя и вынос его наружу из дисковода.

Можно проверить правильность работы оптической системы привода, открыв корпус устройства и понаблюдав за его работой. Убедиться в том, раскручивается ли диск после установки, можно при подключении к приводу только шнура питания (информационный кабель при этом не подключается). Если диск не вращается после установки, то проверяют, светится ли лазер при установке каретки в рабочее положение, но уже без диска. Иногда свечения лазера при дневном свете не видно, поэтому требуется затемнить помещение. Наблюдение за линзой лазера следует проводить с разных ракурсов.

В современных оптических устройствах контроль наличия диска осуществляется самим лазером. Если фотодатчик, установленный в лазерной каретке, получает отраженный сигнал от диска, то электронная схема воспринимает этот сигнал как «наличие диска» и только после этого формирует команду включения маршевого двигателя вращения. Следовательно, если интенсивность свечения лазера недостаточна, то диск раскручиваться не будет.

Сервосистема позиционирования головки считывания информации обеспечивает плавное подведение головки к заданной дорожке записи с ошибкой, не превышающей половины ширины дорожки в режимах поиска требуемого фрагмента информации и нормального воспроизведения. Перемещение головки считывания, а вместе с ней и лазерного луча по полю диска осуществляется двигателем головки. Работа двигателя контролируется сигналами прямого и обратного перемещения, поступающими с процессора управления, а также сигналами, вырабатываемыми процессором радиальных ошибок. Характерными признаками неисправности являются как беспорядочное движение головки по направляющим, так и ее неподвижность.

Визуально можно проконтролировать и правильность работы системы фокусировки. В момент старта диска процессор управления вырабатывает сигналы корректировки, которые обеспечивают многократное (две-три попытки) вертикальное перемещение фокусной линзы, необходимое для точной фокусировки луча на дорожку диска. При обнаружении фокуса вырабатывается сигнал, разрешающий считывание информации. Если после двух-трех попыток этот сигнал не появляется, то процессор управления выключает все системы и диск останавливается. Таким образом, о работоспособности системы фокусировки можно судить как по характерным движениям фокусной линзы в момент старта диска, так и по сигналу запуска режима ускорения диска при успешной фокусировке луча лазера. Другие параметры правильной работы оптической системы визуально не определяются.

Оптические приводы имеют также множество механических узлов, которые требуют смазки трущихся частей. Отсутствие смазки приводит к тому, что привод с трудом выталкивает каретку с диском, а замок каретки может вообще заклинить, и тогда использование дисковода вообще станет невозможным. Смазку нужно наносить аккуратно, предварительно полностью разобрав устройство (места, где она требуется, как правило, хорошо видны). Перед смазыванием нелишне будет очистить места смазки от пыли и грязи. Дело в том, что если упустить момент, когда требуется нанести смазку, то затруднение скольжения приведет к механическим поломкам деталей транспортного механизма или нарушению его регулировок, что, в свою очередь, повлечет за собой либо остановку механизма каретки в промежуточном положении, либо проскальзывание диска во время вращения.

Подобная ситуация может возникнуть и из-за засаливания фрикционных поверхностей держателя диска вследствие частого использования грязных CD/DVD-дисков, что приводит в конце концов к ненадежной работе привода, вплоть до полной его остановки.

Загрязнение посадочного места привода диска и слабый прижим диска к посадочному месту можно устранить, почистив посадочное место диска любым тканым материалом, смоченным в спирте.

Проверить, достаточна ли сила прижима диска к посадочному месту, можно при попытке воспроизвести обычный аудиодиск. Если ошибок и сбоев при воспроизведении аудиодиска нет, а диск с компьютерными данными все-таки читается неустойчиво, можно принять дополнительные меры - подогнуть пружины или увеличить груз для усиления прижима диска сверху.

Из других механических поломок можно назвать заклинивание диска на транспортной каретке (в этом случае диск вообще не раскручивается). Иногда это происходит оттого, что посадочное место диска самопроизвольно опускается по валу двигателя и диск касается элементов транспортной каретки. Для устранения этого дефекта посадочное место передвигают по валу вверх и «методом тыка» подбирают его высоту так, чтобы диск вращался без касания конструктивных элементов, а также чтобы привод обеспечивал устойчивое чтение всех дисков. После этого положение посадочного места диска аккуратно фиксируют на валу.

Впрочем, перечисленные механические неисправности касаются в основном простых механизмов относительно дешевых приводов. Дорогие модели, как правило, имеют сложные механизмы, для которых главным видом механических неисправностей является неустранимая поломка деталей механизма. Чаще всего это происходит из-за того, что пользователь, вместо того чтобы пользоваться кнопками управления, заталкивает каретку с диском внутрь дисковода рукой. Последствия таких действий могут оказаться самыми неприятными. Если загрязненный и запущенный механизм достаточно почистить, протереть и смазать, чтобы он вновь исправно выполнял свои функции, то спешка и приложение чрезмерных усилий к лотку диска могут вызвать поломки, которые устраняются только дорогим и длительным ремонтом.

И наконец, возможны неисправности электронных компонентов. Впрочем, их доля вряд ли превышает 5-6% от всех поломок. К сожалению, современные оптические приводы являются весьма сложными электронными системами, а неисправная микросхема по внешнему виду ничем не отличается от исправной.

Сейчас CD/DVD-приводы могут стоить дешевле какой-нибудь сетевой карты или видеоплаты, но это не значит, что они так же просто устроены. Оптический привод имеет довольно сложную конструкцию и, кроме механической части, содержит как минимум два микроконтроллера, сигнальный процессор (DSP), источник вторичного напряжения, схемы для управления механикой и т.д. Причем большинство микросхем, применяемых в современных приводах, являются специализированными, а следовательно, ремонт электронной части едва ли целесообразен.

Отметим, что в оптическом приводе довольно сложно бывает даже с достаточной степенью надежности диагностировать поломку электроники. Ведь в зависимости от выбранной производителем для конкретной модели стратегии коррекции ошибок и соответственно от сложности процессора и устройства в целом, на практике тот или иной привод может работать с различными дисками по-разному. Этим, кстати, объясняется часто встречающаяся ситуация, когда ваш диск спокойно читается на машине коллеги, а ваш собственный ПК его даже не видит. В дешевых моделях система коррекции может исправлять только одну-две мелкие ошибки в кадре информации, а сложная дорогостоящая система может восстанавливать даже серьезные и протяженные разрушения информации, причем делает она это в несколько этапов по сложному алгоритму.

Каждый изготовитель использует собственный набор микросхем либо комплектует его изделиями от разных изготовителей, а описания, естественно, не прилагает. В связи с тем что для каждого конкретного устройства необходимо разыскивать спецификации практически к каждой микросхеме отдельно, зачастую даже специалисты сервисных центров не всегда могут восстановить работоспособность вашего устройства.

Короче говоря, если после чистки, проверки всех проводов и соединений, а также системных настроек ваш CD/DVD-привод не заработал, а гарантия на него уже прошла, то просто выбросите его и купите новый.

Просмотров: 14094

Что такое DVD?. 3

Основы устройства DVD 3

Множество поверхностей DVD 5

Скорость передачи и время доступа. 6

Запись на DVD 7

Видео на DVD 8

DVD в действии. 8

Звук на DVD 9

Офицальный наследник DVD обьявлен – Blue-ray Disk. 11

Что такое DVD? После долгого периода времени, потраченного на планирование и разработки, увидел свет новый формат, которого все так ждали. Появление формата DVD ознаменовало собой переход на новый, более продвинутый, уровень в области хранения и использования данных, звука и видео. Первоначально аббревиатура DVD расшифровывалась, как digital video disc, это оптические диски с большой емкостью. Эти диски используются для хранения компьютерных программ и приложений, а так же полнометражных фильмов и высококачественного звука. Поэтому, появившаяся несколько позже расшифровка аббревиатуры DVD, как digital versatile disc, т.е. универсальный цифровой диск - более логична.

Снаружи, диски DVD выглядят как обычные диски CD-ROM. Однако возможностей у DVD гораздо больше. Диски DVD могут хранить в 26 раз больше данных, по сравнению с обычным CD-ROM. Имея физические размеры и внешний вид, как у обычного компакт-диска или CD-ROM, диски DVD стали огромным скачком в области емкости для хранения информации, по сравнению со своим предком, вмещающим 650MB данных. Стандартный однослойный, односторонний диск DVD может хранить 4.7GB данных. Но это не предел -- DVD могут изготавливаться по двухслойному стандарту, который позволяет увеличить емкость хранимых на одной стороне данных до 8.5GB. Кроме этого, диски DVD могут быть двухсторонними, что увеличивает емкость одного диска до 17GB. К несчастью, чтобы считать DVD диск, Вам придется купить новое устройство, но это новое аппаратное средство будет так же прекрасно считывать Ваши старые диски CD-ROM и звуковые CD. Что все это означает для нас большая емкость новых дисков? Это значит, что у нас появляются поистине неограниченные возможности для обучения и развлечений, для просмотра видеофильмов с потрясающим цифровым качеством изображения и звука. DVD обеспечивает более четкое и качественное изображение, чем лазерный дис (LD) и более насыщенный звук, чем на CD. Более того, DVD дает вам возможность выбора. Вы можете выбрать, с какого ракурса просматривать сцену фильма, благодаря тому, что одна и та же сцена снимается под разными углами положения камеры. Благодаря этому, один и тот же фильм можно смотреть, например, со сценами насилия или без них, а сюжет одного и того же фильма может причудливым образом изменяться. И почти все это уже имеется в продаже! Далее, мы подробнее рассмотрим технологию, которая предлагает нам столько возможностей.

Основы устройства DVD Как и CD-ROM, диски DVD хранят данные, за счет расположенных насечек вдоль спиральных треков на отражающей металлической поверхности, покрытой пластиком. Используемый в устройствах чтения DVD дисков лазер, скользит вдоль треков по насечкам, а отраженный луч интерпретируется приемным устройством в виде единиц или нулей. Основное требование, при разработке DVD, было простым: увеличить емкость хранимых данных, за счет расположения как можно большего числа насечек вдоль треков на диске, при этом технология изготовления должна быть дешевой. Результатом исследований стала разработка более высокочастотного полупроводникового лазера с меньшей длиной волны, в следствии чего стало возможным использовать насечки более маленького размера. В то время, как лазер в обычном устройстве CD-ROM имеет длину волны 780-нанометров (nm), устройства DVD используют лазер с длиной волны 650-nm или 635-nm, что позволяет покрывать лучом в два раза больше насечек на одном треке, и в два раза больше треков, расположенных на одной записанной поверхности. Другие нововведения - это новый формат секторов, более надежный код коррекции ошибок, и улучшенная модуляция каналов. Вместе, эти улучшения дополнительно увеличивают плотность записи данных в полтора раза. Жесткие производственные требования и незначительно большая поверхность записи, стали последним препятствием, при разработке DVD, из-за чего емкость данных, размещаемых на диске ограничена 4.7Gb. Но оказалось, что это не предел. Для записи видео и звука на DVD применяется очень сложная технология компрессии данных, носящая имя MPEG-2. MPEG-2 представляет из себя следующее поколении стандарта на сжатие (компрессию) видео и звуковых данных, обеспечивающего возможность разместить большие объемы информации в меньшем пространстве. Стандарт сжатия MPEG разработан Экспертной группой кинематографии (Moving Picture Experts Group - MPEG). MPEG это стандарт на сжатие звуковых и видео файлов в более удобный для загрузки или пересылки, например через интернет, формат. По стандарту MPEG-1 потоки видео и звуковых данных передаются со скоростью 150 килобайт в секунду -- с такой же скоростью, как и односкоростной CD-ROM проигрыватель -- и управляются путем выборки ключевых видео кадров и заполнением только областей, изменяющихся между кадрами. К несчастью, MPEG-1 обеспечивает качество видеоизображения более низкое, чем видео, передаваемое по телевизионному стандарту.

Компрессия по стандарту MPEG-2 кардинально меняет положение вещей. Более 97% цифровых данных, представляющих видео сигнал дублируются, т.е. являются избыточными и могут быть сжаты без ущерба качеству изображения. Алгоритм MPEG-2 анализирует видеоизображение в поисках повторений, называемых избыточностью. В результате процесса удаления избыточности, обеспечивается превосходное видеоизображение в формате MPEG-2 при более низкой скорости передачи данных. По этой причине, современные средства поставки видеопрограмм, такие как цифровые спутниковые системы и DVD, используют именно стандарт MPEG-2.

Множество поверхностей DVD

Большинство дисков DVD имеют емкость 4.7GB. Применение схем удвоения плотности и их комбинирования, позволяет иметь диски большей емкости: от 8.5Gb и 9.4Gb до 17Gb.

Существуют следующие структурные типы DVD:

Single Side/Single Layer (односторонний/однослойный): это самая простая структура DVD диска. На таком диске можно разместить до 4.7 Гб данных. Кстати, эта емкость в 7 раз больше емкости обычного звукового CD и CD-ROM диска.

Single Side/Dual Layer (односторонний/двуслойный): этот тип дисков имеет два слоя данных, один из которых полупрозрачный. Оба слоя считываются с одной стороны и на таком диске можно разместить 8.5 Гб данных, т.е. на 3.5 Гб больше, чем на однослойном/одностороннем диске.

Double Side/Single Layer (двусторонний/однослойный): на таком диске помещается 9.4 Гб данных (по 4.7 Гб на каждой стороне). Нетрудно заметить, что емкость такого диска вдвое больше одностороннего/однослойного DVD диска. Между тем, из-за того, что данные располагаются с двух сторон, придется переворачивать диск или использовать устройство, которое может прочитать данные с обеих сторон диска самостоятельно. Double Side/Double Layer (двусторонний/двуслойный): структура этого диска обеспечивает возможность разместить на нем до 17 Гб данных (по 8.5 Гб на каждой стороне). Заметим, что все приведенные цифры соответствуют емкости, указанной в миллионах байтов; если округлять по другой методике, принимая за основу, что 1Кб=1024 байта, а не 1000 байт, то получатся другие числа: 4.38GB, 7.95GB, 8.75GB, и 15.9GB соответственно. Нетрудно заметить, что простейшим способом удвоения емкости является использование двухсторонних дисков. Производители могут изготавливать диски DVD толщиной 0.6мм, что в половину меньше толщины стандартного диска CD. Это дает возможность соединить два диска обратными сторонами и получить емкость в 9.4Gb. По другой технологии, создается второй слой для размещения данных, это позволяет увеличить емкость одной стороны диска. Первый слой делается полупрозрачным, таким образом лазерный луч может проходить через него и отражаться уже от второго слоя. По этой схеме на каждой стороне дика можно разместить по 8.5GB данных.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта